

COMMON GROUND IMPROVEMENT METHODS			
soft CLAY			Ioose SAND
	REINFOR	CEMENT	
CONSOLIDATION	Rigid Inclusions (cement grout etc.)	Non-Rigid Inclusions (sand, stone, etc.)	COMPACTION
Vertical Drains	Displacement Cement Columns	Dynamic Replacement Columns	Dynamic Compaction
Vacuum Consolidation	Deep Soil Mixing / Jet Grout Columns	Vibro Replacement Columns	Vibro Compaction

		RELATIVE DENSITY	
Relative density (D _R): Traditionally, to show how well the coarse-grained soil			
(sand) is compacted.	Relative Density (D _R)	Description	
	0 - 15	Very loose	
	15 - 35	Loose	
	35 – 65	Medium dense	
	65 – 85	Dense	
	85 - 100	Very dense	
An expression of the void ratio (e) relative to e _{max} and e _{min} :			
$D_R = \frac{e_{max} - e}{e_{max} - e_{min}} * 100\%$			

Where

- e_{max} and e_{min} = max. and min. void ratio (determined from laboratory tests; ASTM D4254) \Rightarrow well-known problems with the determination of e_{max} and e_{min} .
- *e* = in-situ void ratio (computed from the unit weight of the soil but accurate measurements of the unit weight of clean sand are **difficult** or **impossible**).

Mostly, D_R from correlationships based on in-situ tests e.g. CPT

PERFORMANCE CRITERIA

Traditional practice:

- D_R < 50% Liquefaction occurs principally in saturated clean sands and silty sands
- $D_R \ge 70\%$ The lower limit of relative density beyond which liquefaction will not occur \Rightarrow dense sands: with their tendency to dilate during cyclic shearing will generate negative pore water pressure and increase their resistance to shear stress.

Performance criteria for anti-liquefaction (FHWA, 1992 / 1997):

Description	Relative Density (D _R %)
Floor slabs, flat bottom tanks, embankments	Min. 60 – 65%
Column footings, bridge footings	Min. 70 – 75%
Machinery and mat foundations	Min. 75 – 80%

PROPOSED PERFORMANCE / ACCEPTANCE CRITERIA

Is relative density a suitable acceptance criteria for deep compaction (especially below water)? Perhaps, **not**.

- Difficulties in measuring density below water; and uncertainties associated with the determination of e_{\min} and e_{\max} .
- Correlations developed from CPT (based on CC testing) \Rightarrow **large spread** of data.
- Strength and stiffness not always well represented by D_R
- Relative density is an intermediate parameter CPT q_c is directly responding to the strength and stiffness ⇒ better to estimate the friction angle, stiffness and liquefaction directly from CPT results and not go through the intermediate step of relative density to estimate these parameters.
- Adopt performance or acceptance criteria based on "Functional (Performance) Requirements" – true requirements of allowable settlement (cm), required bearing capacity (kN/m²), etc.; rather than on technical parameters specification (% D_R).

	DYNAMIC COMPACTION	
An ancient art-of-practice; oldest form of ground improvement is the dropping of		
heavy weights on to the ground surface	to compact soils at depth by impacts.	
video	Dynamic compaction Dynamic consolidation	
	Heavy Tamping	
	video	

CC	OMPACTION ENI	ERGY - EXAMPLE
	for pervious clear ⇒ From table: t for sand ~ 20 (► select 25 ⇒ Applied ener	gy per m ² n ³ * 7m (comp. depth)
Type of Soil	Applied Energy (typical/normal)	Improvement Expected
Pervious coarse grained soil (k > 10 ⁻⁵ m/s)	20 – 25 ton.m/m ³	Excellent
Semi-pervious fine grained soil	25 – 35 ton.m/m ³	Moderate to good
Impervious fine-grained soil $(k < 10^{-8} m/s)$	Not applicable	Not applicable
Landfills	60 – 110 ton.m/m ³	Excellent

	ΤΥΡΙϹΑ	L SAFE PPV & DISTANC
PPV		Structural Effects
$PPV \le 4 mm/s$	No damage	
4 mm/s < PPV \leq 8 mm/s	Damage can of fissured struct	occur to sensitive or previously tures
PPV > 8 mm/s	Damage to or	dinary structures
PPV > 30 mm/s	Damage to hig	ghly rigid structures
Description		Approximate Safe Distance
Rigid structures		20 m
Normal buildings in good condition		30 m
Sensitive structures		50 m

SUITABLE SOILS FOR VIBRO COMPACTION		
Soil Type	Effectiveness	Remarks
Sand with < 5% fines	Excellent	Seek expert advice when grain size curve is very steep; high carbonate and/or mica content.
Sand with < 10% fines	Good	Success depends on clay content (< 2 – 3%), grain shape, grain size curve, water table, etc.
Sand with > 10% fines	Poor to marginal	
Sand with > 10% fines Poor to marginal		Based on CPT results (Massarsch, 1991)

CONCLUSION ON COMPACTION METHODS

- Compaction is quick and cost effective provided the soil permeability is sufficiently high (fine content < 10%; clay < 2 – 3%) to allow rapid dissipation of excess pore water pressure generated during compaction process.
- Compaction field trials are necessary to validate operation parameters and performance (acceptance) criteria before commencement of full production works. QA/QC, compaction records and pre and post compaction in-situ tests (e.g. PMT, CPT, etc.) are important part of the works.
- Friction angle of the soil must be initially high enough to permit the passage of the compaction shear waves. This requirement is usually satisfied if the soil is well-graded (uniformly graded soil is difficult to compact).
 ⇒ some specify min. 30° at void ratio corresponding to a D_R of min. 35%.
- "Dirty" granular soil is not effectively **compactable**. Consider other methods of ground improvement using **REINFORCEMENT** (dynamic replacement instead of DC; vibro replacement instead of VC or others).
- DC and VC have their own merits, limitations and economy.

MERITS AND LIMITATIONS OF VIBRO COMPACTION

Merits

- Suitable for deep compaction (D > 10m)
- Safe distance from sensitive structure can be as close as 3 4m

Limitations

- Require a source of **water** for the works.
- Require overburden fill if the upper layer has to be compacted well.
- Difficulty with **probe penetration** if gravel content > 20 30% and with cemented materials; dynamic compaction can be a viable alternative.

MERITS AND LIMITATIONS OF DYNAMIC COMPACTION

Merits

- **Cost effective** for larger treatment area (> 50,000m²) **simple** process and high **production** rate (10,000m²/mth per rig).
- Economic treatment depth ($D \le 5 7m$).
- Non-saturated collapsible soil / non-engineered fill: Dynamic compaction is suited to collapse the soil matrix where fines content and soil permeability is not an issue. Only collapse of voids and expulsion of gas upon repeated impacts.

Limitations

- Excessive surface vibration due to heavy impacts; safe distance (> 30m).
- Deep compaction (> 10m) may not be economical; vibro compaction can be a viable alternative.